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MMFuser: Multimodal Multi-Layer Feature Fuser
for Fine-Grained Vision-Language Understanding

Yue Cao, Yangzhou Liu, Zhe Chen, Guangchen Shi, Wenhai Wang, Danhuai Zhao, and Tong Lu

Abstract—Despite significant advancements in Multimodal
Large Language Models (MLLMs) for understanding complex
human intentions through cross-modal interactions, capturing
intricate image details remains challenging. Previous methods
integrating multiple vision encoders to enhance visual detail
introduce redundancy and computational overhead. We observe
that most MLLMs utilize only the last-layer feature map of
the vision encoder for visual representation, neglecting the
rich fine-grained information in shallow feature maps. To ad-
dress this issue, we propose MMFuser, a simple yet effective
multi-layer feature fuser that efficiently integrates deep and
shallow features from Vision Transformers (ViTs). Specifically,
it leverages semantically aligned deep features as queries to
dynamically extract missing details from shallow features, thus
preserving semantic alignment while enriching the representa-
tion with fine-grained information. Applied to the LLaVA-1.5
model, MMFuser achieves significant improvements in visual
representation and benchmark performance, providing a more
flexible and lightweight solution compared to multi-encoder
ensemble methods. The code and model have been released at
https://github.com/yuecao0119/MMFuser.

Index Terms—Multimodal large language model, visual per-
ception, feature fusion, Transformer.

I. INTRODUCTION

IN recent years, Multimodal Large Language Models
(MLLMs) [1]–[7] have emerged as a research hotspot in

the field of Artificial General Intelligence (AGI). These models
have made significant strides in understanding and expressing
complex human intent through cross-modal interaction and
learning. Building on rapid advancements in Large Language
Models (LLMs) [8]–[16], MLLMs utilize pre-trained vision
encoders to extract image features and integrate them with
advanced LLMs, demonstrating remarkable capabilities across
a wide range of vision-language tasks.

Currently, the mainstream approach [2]–[5], [22]–[24] in the
community involves using a pre-trained Vision Transformer
(ViT) [17], [25] or its variants [18], [19], [26] as the vision
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(a) Cosine similarity between different feature maps.
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(b) Visualization of different feature maps.
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Fig. 1. Comparison of feature maps from different vision encoders and various
layers of CLIP-ViT. (a) Cosine similarity is computed between the feature
maps from various vision encoders, including CLIP-ViT-L [17], ConvNeXt-
XXL [18], DINOv2-L [19], EVA02-L [20], and SigLIP-L [21], and the final-
layer feature map of CLIP-ViT-L. (b) Visualization of different feature maps.
These results indicate significant feature differences not only between various
vision encoders but also across different layers within the same vision encoder.
This observation motivates us to fully explore the potential of individual vision
encoders for developing MLLMs.

encoder, feeding the outputs from its final or penultimate
layer into LLMs as visual representations. In this manner,
these features with rich high-level semantic information are
effectively transformed from an image space to a semantic text
space. However, due to the loss of low-level image information
in deep features, current MLLMs encounter challenges in ac-
curately interpreting details, resulting in issues such as Optical
Character Recognition (OCR) errors and object hallucinations.

To address these issues, recent studies [24], [27] indicate
that the ability of vision encoders to learn fine-grained image
features has become a bottleneck for MLLMs. Consequently,
some researchers [15], [28]–[30] believe that solely relying on
features of a single vision encoder may not be optimal. They
propose integrating multiple pre-trained vision encoders, such
as CLIP [17], DINOv2 [19], and ConvNext [18], to enhance
fine-grained visual representations in a complementary man-
ner. While these ensemble-based methods achieve promising
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Fig. 2. Performance comparison across different model sizes. (a) Among 7B models, including Qwen-VL-Chat [5], LLaVA-1.5-7B [3], our model surpasses
LLaVA-1.5-7B on 11 out of 12 benchmarks, with an average score of 61.8 compared to LLaVA-1.5-7B’s 60.3. (b) Among 13B models, including
InstructBLIP [1] and LLaVA-1.5-13B [3], our model also outperforms LLaVA-1.5-13B on 10 out of 12 benchmarks, achieving an average score of 64.1
compared to LLaVA-1.5-13B’s 63.2. These results indicate that MMFuser can effectively improve the performance of LLaVA-1.5 models.

results, they unfortunately introduce model redundancy and
increase computational overhead. Therefore, the necessity of
employing multiple vision encoders remains contentious.

As a matter of fact, even with a single vision encoder,
learned visual representations are diverse, as shown in Fig. 1.
The visualizations indicate that deep features are effective at
extracting high-level semantic information, whereas shallow
features are better suited for capturing low-level details such
as edges and textures, which have not been fully leveraged in
current MLLMs. Looking back at classic image and video
tasks such as object detection and semantic segmentation,
multi-layer features are widely used [31]–[35], where the
combination of shallow and deep visual features provides
a more comprehensive understanding of images or videos.
However, the application of multi-layer features in this manner
remains relatively uncommon within the field of MLLMs.

It is natural to extend this idea to the visual representation
of MLLMs. We have experimented with some straightforward
methods to combine multiple layers of features from a single
ViT [17] for enhancing image detail, such as element-wise
averaging or channel-wise concatenation. However, these sim-
ple fusion methods have a little improvement in performance.
Through further exploration, we find that while shallow fea-
tures capture richer low-level details, their semantic alignment
with the text feature space is insufficient. This deficiency
impairs the model’s ability to understand images and offsets
the benefits introduced by combining shallow and deep visual
features, indicating that multi-layer feature fusion in MLLMs
is vital and requires more thoughtful designs.

Further, previous work [36] suggests that LLMs excel in
understanding deep features of ViTs, which are fully aligned
with text feature spaces. Conversely, while shallow features
are rich in details, they exhibit poor semantic alignment,
making it challenging for LLMs to effectively interpret these

features. This insight inspired us to propose a simple yet
effective method called MMFuser (see Fig. 3), which uses
deep features as queries to dynamically extract missing details
from shallow features. It minimizes the risk of shallow features
disrupting semantic alignment, maintaining the coherence of
deep features while enriching them with fine-grained infor-
mation. By leveraging multi-layer features, MMFuser can
enhance the overall performance of MLLM in processing
images and videos.

To validate the effectiveness of MMFuser, we applied it to
the recent well-known model, LLaVA-1.5 [3]. As shown in
Fig. 2, our MMFuser significantly enhances the visual repre-
sentations input into the MLLM, thereby improving LLaVA-
1.5’s performance on most multimodal benchmarks. Specifi-
cally, our 7B model outperformed LLaVA-1.5-7B in 10 out of
12 benchmarks, and our 13B model outperformed LLaVA-
1.5-13B in 10 out of 12 benchmarks. Besides, our model
demonstrated superior performance in fine-grained recognition
tasks, including OCR and visual grounding.

In summary, our main contributions are as follows:

• We reveal that the expressive potential of single vision
encoders in MLLMs is underutilized. Shallow features,
rich in detail, suffer from poor semantic alignment with
text features, indicating that simple fusion methods are
inadequate and require more advanced design.

• We introduce MMFuser, which enhances the visual rep-
resentations of a single vision encoder by dynamically in-
tegrating fine-grained details from shallow features while
maintaining the semantic coherence of deep features.

• Applying MMFuser to LLaVA-1.5 models, we achieve
significant performance improvements. Our 13B model
surpasses LLaVA-1.5 by 3.8, 53.9, and 2.2 points on the
VizWiz, MME, and MMBench-EN, respectively, demon-
strating the efficacy of our method.
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Fig. 3. Previous methods vs. the proposed MMFuser. (a) Previous methods
typically utilize visual features from the final or penultimate layer of the vision
encoder. For example, the LLaVA series [2], [3] adopted this approach. (b)
Some models integrate visual features from multiple vision encoders, such as
MouSi [47], DeepSeek-VL [15], and LLaVA-HR [28]. (c) Our MMFuser fuses
visual features from different layers of a single vision encoder, providing
richer detail and better semantic alignment with text.

II. RELATED WORK

A. Multimodal Large Language Model

Multimodal Large Language Models (MLLMs) integrate
visual representations from images with linguistic embeddings
from text, thereby enhancing the models’ capabilities in com-
prehending and generating language descriptions of visual
content. Most open-source MLLMs employ architectures that
include a pre-trained vision encoder, an LLM, and a cross-
modal connector. Early models, such as the BLIP series [1],
[36], utilized the Q-Former module to align text and images,
thus improving multimodal capabilities. Flamingo [37] em-
ployed a gated cross-attention mechanism to integrate images
and text. LLaVA-1.5 [3] adopted an MLP projector to connect
the pre-trained vision encoder with the LLM. InternVL [4], [6]
employed a dynamic resolution strategy, segmenting images
into tiles and encoding both the tiles and the thumbnail view
together. It then uses a pixel shuffle operation to reduce the
number of visual tokens before integrating these features with
the LLM through an MLP projector.

Additionally, private MLLMs such as the Gemini se-
ries [38], [39], GPT-4V [7], and Claude-3V series [40], along
with open-source MLLMs like MiniGPT-4 [23], Qwen-VL [5],
CogVLM [41], the VisionLLM series [42], [43], and the All-
Seeing series [44], [45], among others [46], have demonstrated
robust multimodal capabilities. These models exemplify the
powerful ability of MLLMs to understand, generalize, and
reason with multimodal information, consistently setting new
benchmarks in multimodal tasks.

B. Vision Encoder in MLLMs

The vision encoder plays a pivotal role in MLLMs, where
notable models like CLIP-ViT [17] have been widely used in
this field. CLIP [17] leveraged contrastive learning on large-
scale image-text pairs for pre-training, resulting in a vision
encoder that learns rich and general visual representations.
This capability enhances the understanding of the relationship
between vision and language. Several models, including the
LLaVA series [2], [3], PaLI [48], and Qwen-VL [5], adopted
CLIP-ViT [17], [49] as their default vision encoder.

Additionally, other vision foundation models are employed
to construct MLLMs. For instance, CogVLM [41] leveraged
the pre-trained EVA2-CLIP-E [50] model for visual repre-
sentations. ConvLLaVA [26] incorporated ConvNeXt [18], a
convolution-based hierarchical model, as its vision encoder.
In DeepSeek-VL [15], SigLIP [21] and SAM-ViT [51] were
utilized as vision encoders. Furthermore, InternVL [4], [6]
employed InternViT-6B, a vision foundation model trained
on web-scale image-text data. These works typically use the
feature map from the final layer of the vision encoder as the
visual representation, as shown in Fig. 3 (a). In contrast, our
approach aims to explore the potential benefits of using feature
maps from the shallow and intermediate layers of the vision
encoder for vision-language tasks.

C. Enhanced Visual Representation in MLLMs

Many works are dedicated to enhancing visual representa-
tions in MLLMs, including:

1) Scaling Up the Vision Encoder: PaLI [48] increased the
parameters of its vision encoder to 4 billion. In PaLI-17B,
the vision encoder, ViT-e, accounts for approximately 25% of
the total parameters. InternVL [4] scaled its vision foundation
model to 6 billion parameters, progressively aligning it with a
large language model. PaLM-E [52] achieved a scale of 562
billion parameters by integrating the 540 billion parameter
PaLM [53] LLM with the ViT-22B [54].

2) Integrating Multiple Vision Encoders: As shown in
Fig. 3 (b), this method enhances visual representations by in-
tegrating multiple vision encoders. For example, MMVP [27]
employed a Mixture of Features (MoF) approach to integrate
image features from CLIP-ViT and DINOv2 [19]. Notably,
DINOv2 was a self-supervised vision model trained without
any language guidance. Similarly, MouSi [47] utilized an
ensemble technique to synergize the capabilities of individual
vision encoders. This method introduced a fusion network to
unify the processing of outputs from different vision encoders,
including CLIP, DINOv2, and SAM [51]. LLaVA-HR [28]
integrated image features from two vision encoders of different
resolutions: 336px from CLIP-ViT and 1024px from CLIP-
ConvNeXt [18]. This approach leveraged the strengths of both
resolution inputs to enhance visual understanding. DeepSeek-
VL [15] employed a hybrid vision encoder design, effec-
tively encoding images by combining SigLIP-L [21] for low-
resolution inputs and SAM-B [51] for high-resolution inputs.

3) Feature Fusion: MEP3P [55] enhanced the original
visual features input into MLLMs with image depth features
and pseudo-3D positions. VCMR [56] utilized deformable at-
tention to process multi-granularity image features and obtain
fine-grained information, thereby improving performance in
subsequent cross-modal tasks. Our concurrent work, Dense
Connector [57], integrated features from multiple layers, en-
riching the visual inputs for MLLMs by capturing multi-level
representations from the vision encoder.

Overall, these methods demonstrated significant perfor-
mance boosts for MLLMs. However, the potential of a single
vision encoder remained underexplored. To address this, we
proposed MMFuser, to integrate feature maps from multiple
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Fig. 4. Overview of MMFuser. In MMFuser, feature maps from different layers of the vision encoder are strategically integrated to enhance the visual
representations. Deep feature maps are employed as query elements, while shallow and intermediate feature maps are concatenated to form key and value
elements. Through a dynamic attention-based fusion, MMFuser combines fine-grained details and higher-level semantic information. The fused features are
then aligned with text using a projector and subsequently passed as inputs to LLMs.

layers of the vision encoder, as shown in Fig. 3 (c). This
approach allowed us to obtain more powerful visual repre-
sentations, thereby enhancing the performance of MLLMs.

III. METHOD

In this section, we address the challenge of missing detailed
information in current visual representations for MLLMs.
Initial attempts using some simple fusion methods demon-
strate that shallow features suffer from inadequate semantic
alignment. To overcome this, we propose the MMFuser for
MLLMs, designed to effectively integrate multi-layer features
while maintaining semantic alignment.

A. Analysis of Visual Representations for MLLMs

Currently, most mainstream MLLMs [2]–[4], [23], [58],
[59] adopt CLIP-ViT [17] as their vision encoder, typically
selecting a single feature map from the final layers as the visual
representation. Prior studies [60] suggest that in deeper layers
of ViT, the receptive fields of attention heads become pre-
dominantly global, while the shallow layers retain both local
and global information. Consequently, the lack of local details
in deep feature maps can lead to suboptimal performance in
fine-grained visual recognition tasks.

Different from existing approaches that integrate multiple
encoders [15], [28]–[30], we consider that the visual infor-
mation captured by the CLIP-ViT itself is not fully leveraged
in MLLMs. As illustrated in Fig. 1, shallow layers capture
fine-grained details, which are often underutilized. Therefore,
we argue that combining shallow and deep features can
significantly enhance MLLM performance.

To validate our point, we explored several feature map fu-
sion methods. We selected L feature maps from various depths
of ViT, denoted as F = [F1, F2, ..., FL], where Fi ∈ RN×D,
with i ∈ [1, L]. Here, N represents the number of ViT patches,
and D denotes the dimension of the image feature embeddings.
The four fusion methods considered are: (1) Concatenation:
Concatenate feature maps along the channel dimension to

TABLE I
COMPARISON BETWEEN THE LLAVA-1.5 BASELINE, FOUR SIMPLE

FEATURE FUSION METHODS, AND OUR MMFUSER.

Method VizWiz POPE MME MMBCN MMVet Avg.[61] [62] [63] [64] [65]

LLaVA-1.5-13B [3] 53.6 85.9 1531.3 63.6 35.4 63.0

w/ Concatenation 52.1 86.9 1537.5 63.7 35.8 63.5
w/ Average 54.7 87.1 1527.9 63.6 35.7 63.0
w/ Weighted Average 54.4 87.0 1532.8 62.5 34.6 63.1
w/ FPN [31] 53.7 87.3 1553.2 63.4 37.3 63.9

w/ MMFuser (Ours) 57.4 87.5 1585.2 63.8 36.6 64.9

create the fused feature map, i.e. Concat(F1, F2, ..., FL). (2)
Average: Compute the element-wise average of all feature
maps to obtain the fused feature map, i.e. 1

L

∑L
i=1 Fi. (3)

Weighted Average: Assign learnable weights to each feature
map, then compute the weighted average as

∑L
i=1 wiFi, where

wi is the learnable weight associated with Fi. (4) Feature
Pyramid Network (FPN) [31]: Feed all feature maps into FPN
for multi-scale feature learning, then compute the weighted
average of the FPN outputs to obtain the fused feature map.

We applied the fused feature maps as the visual represen-
tations in LLaVA-1.5 [3] and followed its original settings to
evaluate model performance. However, as shown in Table I,
none of the four fusion methods consistently improved model
performance. We attribute this to the semantic misalignment
between deep and shallow features. As shown in Fig. 1,
although shallow features capture more fine-grained details,
their alignment with text is considerably weaker than that of
deep features. In deeper layers, the features that correspond
to the text are prominently highlighted, while shallow features
lack this clear correspondence. By simply fusing the two types
of image features, the model struggles to effectively leverage
the complementary strengths of each feature.
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TABLE II
COMPARISON WITH STATE-OF-THE-ART MLLMS ON 12 GENERAL MULTIMODAL BENCHMARKS. THE BENCHMARKS INCLUDE: VQAV2 [67], GQA [68],

VIZWIZ [61], SCIENCEQA-IMG [69]; TEXTVQA [70], POPE [62], MME [63], MMBENCH-EN [64], MMBENCH-CN [64], SEED-BENCH [71],
LLAVA-BENCH-IN-THE-WILD [2], AND MMVET [65]. ∗ THE TRAINING ANNOTATIONS OF THE DATASETS ARE OBSERVED DURING TRAINING. THE

BEST RESULTS ARE MARKED IN BOLD, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Method LLM VQAv2 GQA VizWiz SQAI VQAT POPE MME MMB MMBCN SEED LLaVAW MMVet

InstructBLIP [1] Vicuna-7B – 49.2 34.5 60.5 50.1 – – 36.0 23.7 53.4 60.9 26.2
IDEFICS-9B [72] LLaMA-7B 50.9 38.4 35.5 – 25.9 – – 48.2 25.2 – – –
Qwen-VL [5] Qwen-7B 78.8∗ 59.3∗ 35.2 67.1 63.8∗ – – 38.2 7.4 56.3 – –
Qwen-VL-Chat [5] Qwen-7B 78.2∗ 57.5∗ 38.9 68.2 61.5∗ – 1487.5 60.6 56.7 58.2 – –
LLaVA-1.5-7B [3] Vicuna-7B 78.5∗ 62.0∗ 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 58.6 63.4 30.5
LLaVA-1.5-7B
+ MMFuser (Ours) Vicuna-7B 79.1∗ 62.8∗ 53.4 68.7 58.8 86.3 1479.7 67.5 60.1 60.8 65.5 32.6

BLIP-2 [36] Vicuna-13B 65.0 41.0 19.6 61.0 42.5 85.3 1293.8 – – 46.4 38.1 22.4
InstructBLIP [1] Vicuna-13B – 49.5 33.4 63.1 50.7 78.9 1212.8 – – – 58.2 25.6
IDEFICS-80B [72] LLaMA-65B 60.0 45.2 36.0 – 30.9 – – 54.5 38.1 – – –
Shikra [73] Vicuna-13B 77.4∗ – – – – – – 58.8 – – – –
LLaVA-1.5-13B [3] Vicuna-13B 80.0∗ 63.3∗ 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 70.7 35.4
LLaVA-1.5-13B
+ MMFuser (Ours) Vicuna-13B 80.1∗ 63.4∗ 57.4 71.2 59.9 87.5 1585.2 69.9 63.8 62.0 71.8 36.6

B. MMFuser: Multimodal Multi-Layer Feature Fuser

Building on the insights from the previous sections, we
observe that the shallow and deep features of ViT can com-
plement each other. To harness this potential, we propose a
multi-layer feature fusion module, MMFuser. It can serve as a
bridge between the vision encoder and the LLM. The overall
architecture of MMFuser is shown in Fig. 4.

Specifically, we extract L feature maps from the ViT,
denoted as F = [F1, F2, ..., FL]. Since the strong semantic
alignment between deep visual features and text space, we use
the deep feature FL as queries to dynamically extract missing
details from shallow features X = Concat(F1, F2, ..., FL−1),
through a cross-attention operation. This results in a visual
feature Fca ∈ RN×D with richer fine-grained features. This
process can be formulated as:

Fca = Attention(norm(FL), norm(X)), (1)

where Attention(·) denotes the attention mechanism, norm(·)
means layer normalization [66], and Concat(·) represents the
concatenation operation.

To effectively facilitate feature interaction and emphasize
salient features, we incorporate a self-attention mechanism into
the feature map Fca, formulated as:

F ′
sa = Attention(norm (Fca), norm (Fca)),

Fsa = Fca + γ2F
′
sa, (2)

where γ2 ∈ RD is a learnable vector that adjusts the
contribution of Fca relative to F ′

sa. Subsequently, for the
resulting feature map Fsa, we introduce another learnable
vector γ1 ∈ RD to modulate the integration of FL and Fsa:

Fvisual = FL + γ1Fsa. (3)

Through the aforementioned steps, we derive the enhanced
visual feature Fvisual. Unlike the original visual feature FL,
Fvisual integrates richer fine-grained information, making it a
superior alternative for the visual input to the LLM.

C. Overall Framework Design

Our proposed MMFuser can be integrated into main-
stream open-source MLLMs, particularly within the “ViT-
MLP-LLM” architecture [2]–[4], [23]. As a case study, we
demonstrate this integration using the LLaVA-1.5 model. In
this framework, MMFuser is positioned between the ViT and
the MLP projector to fuse multi-layer feature maps from the
ViT. The overall architecture, illustrated in Fig. 4, consists
of four key components: the vision encoder (ViT), MMFuser,
MLP projector, and the large language model.

The input image is first fed into the ViT to extract multi-
layer visual features. Then, our MMFuser leverages these
multi-layer features to obtain a fused feature with richer local
information. Following the pipeline in LLaVA-1.5 [3], the
fused features are then aligned with the text embedding space
through a trainable MLP projector. Similarly, the input text
is transformed into a text embedding via a tokenizer. Finally,
the image and text embeddings are concatenated and fed into
an LLM, such as Vicuna-7B [8]. The LLM then answers the
user’s questions based on the image features. This framework
can also be readily adapted for processing video data. Overall,
existing mainstream MLLMs can easily adopt our MMFuser to
enhance their visual feature extraction capabilities.

IV. EXPERIMENT

A. Implementation Details

We adopt LLaVA-1.5 [3] as the baseline to study the
visual representations of MLLMs. The model comprises
three components: the pre-trained vision encoder CLIP-ViT-
L-336px [17], the pre-trained LLM Vicuna-v1.5 [8], and a
two-layer MLP projector. To fully leverage the potential of
a single vision encoder, we use the proposed MMFuser to
fuse multi-layer features from the vision encoder, replacing
the original single-layer image feature for the LLM.

1) Architecture Settings: In MMFuser, the number of fea-
ture layers L selected from the ViT is set to 5 by default. The
parameters γ1 and γ2, which control the weights of features
from different layers, are both initialized to 0. Deformable
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TABLE III
RESULT ON OCRBENCH [82]. RECOG.: TEXT RECOGNITION, VQAS :
SCENE TEXT-CENTRIC VQA; VQAD : DOCUMENT-ORIENTED VQA;

KIE: KEY INFORMATION EXTRACTION; HMER: HANDWRITTEN
MATHEMATICAL EXPRESSION; FINAL: OVERALL SCORE ACROSS ALL

FIVE CATEGORIES.

Method Recog. VQAS VQAD KIE HMER Final

MiniGPT4V2 [83] 124 29 4 0 0 157
BLIP2 [36] 154 71 10 0 0 235
InstructBLIP [1] 168 93 14 1 0 276
BLIVA [84] 165 103 22 1 0 291

LLaVA-1.5-7B [3] 160 117 15 5 0 297
+ MMFuser (Ours) 159 128 20 8 0 315↑18

LLaVA-1.5-13B [3] 176 129 19 7 0 331
+ MMFuser (Ours) 171 136 25 11 0 343↑12

attention [74] is used as the default attention mechanism in
MMFuser. In this setup, the number of sampling points is
fixed at 4, with the attention layer employing 16 heads.

2) Training Settings: For a fair comparison, we adopt the
same two-stage training recipes as LLaVA-1.5 [3]:

Pre-training. During the pre-training stage, we utilize the
LLaVA-LCS-558K dataset [2], which comprises 558K image-
caption pairs. In this phase, the vision encoder and the LLM
are kept frozen. Training is focused solely on the MLP
projector and MMFuser, with the objective of aligning the
visual features with the input space of the LLM.

Fine-tuning. During the fine-tuning stage, we employ
the LLaVA-Instruct-665K dataset [3], which includes 665K
instruction-following data from sources such as GQA [68],
TextCaps [75], ShareGPT [76], and others [67], [77]–[81]. In
this phase, the MLP projector, MMFuser, and LLM are trained
end-to-end, while the vision encoder remains frozen.

We train our model using the same experimental settings
and hyperparameters as LLaVA-1.5. We adopt the AdamW
optimizer and use a cosine decay learning rate scheduler with
an initial warmup ratio of 0.03 and no weight decay. The
global batch size is set to 256 for pre-training and 128 for fine-
tuning. The learning rate is set to 1e-3 during the pre-training
phase and reduced to 2e-5 during the fine-tuning phase. Both
phases are trained for a single epoch.

B. Results on General Multimodal Benchmarks

We evaluated MMFuser using a comprehensive suite of
12 benchmarks, including both academic visual question an-
swering (VQA) benchmarks and comprehensive multimodal
benchmarks, to assess its performance across multiple dimen-
sions. As shown in Table II, our model exhibits substantial
performance improvements on these benchmarks.

1) Results on Academic VQA Benchmarks: On the aca-
demic VQA benchmarks, our 7B model consistently out-
performs LLaVA-1.5-7B across all five benchmarks. Simi-
larly, the 13B version of our model surpasses LLaVA-1.5-
13B on the VQAv2, GQA, and VizWiz benchmarks, with
a particularly notable improvement of 3.8 points on VizWiz.
Furthermore, our model achieves comparable performance on
the ScienceQA and TextVQA benchmarks.

TABLE IV
RESULTS OF REGION CAPTIONING. RESULTS ARE REPORTED WITH THE

CIDER SCORE.

Model RefCOCO RefCOCO+ RefCOCOg Avg.val testA testB val testA testB val test

LLaVA-1.5-7B 30.4 16.0 42.0 30.2 20.3 39.1 60.5 58.9 37.2
+ MMFuser 33.6 17.7 45.9 33.6 21.2 42.6 61.5 61.6 39.7

LLaVA-1.5-13B 33.1 16.7 45.2 33.4 19.8 41.6 61.6 59.9 38.9
+ MMFuser 38.2 19.5 53.6 36.8 22.8 43.8 64.5 63.4 42.8

TABLE V
RESULTS OF REFERRING EXPRESSION COMPREHENSION. RESULTS ARE

REPORTED WITH THE PRECISION@0.5 SCORE.

Model RefCOCO RefCOCO+ RefCOCOg Avg.val testA testB val testA testB val test

LLaVA-1.5-7B 56.2 64.4 47.5 50.0 59.2 39.0 48.8 48.4 51.7
+ MMFuser 62.0 70.7 52.4 55.6 65.1 44.2 54.0 54.8 57.4

LLaVA-1.5-13B 66.5 73.9 55.7 59.8 67.9 48.7 57.3 56.0 60.7
+ MMFuser 66.6 73.9 56.3 61.3 68.8 49.2 56.5 56.5 61.1

2) Results on Comprehensive Multimodal Benchmarks:
In the multimodal benchmarks, our 7B and 13B models
demonstrate significant performance improvements compared
to the corresponding LLaVA-1.5 models. Notably, our 13B
model substantially outperforms LLaVA-1.5-13B across seven
different benchmarks. Specifically, our 13B model achieves
scores of 1585.2 on the MME benchmark and 69.9 on the
MMBench benchmark, representing enhancements of 53.9 and
2.2 points over LLaVA-1.5-13B, respectively. Additionally, our
model exhibits strong performance across other multimodal
benchmarks, such as POPE, SEED-Bench, and MMVet.

C. Results on OCRBench

OCRBench [82] serves as a comprehensive OCR bench-
mark, comprising 1,000 manually curated and corrected OCR-
related VQA instructions. The benchmark is systematically di-
vided into five distinct categories: Text Recognition (Recog.),
Scene Text-Centric VQA (VQAS), Document-Oriented VQA
(VQAD), Key Information Extraction (KIE), and Handwritten
Mathematical Expression Recognition (HMER).

As detailed in Table III, our models, with 7B and 13B
parameters, exhibit an average improvement of 15 points over
LLaVA-1.5. This substantial gain underscores MMFuser’s en-
hanced capability in refining the granularity of visual represen-
tations, thereby contributing to more accurate text recognition
and superior OCR performance.

D. Results on Region-level Benchmarks

To assess regional understanding and grounding capabilities,
we evaluate MMFuser on two representative regional-level
tasks. (1) Regional Captioning [81], [85]: This task requires
the model to generate a description for an object in the
image based on a given region. (2) Referring Expression
Comprehension [80], [85]: This task requires the model to
locate target objects in an image based on a given description.
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Input Image Query MMFuser Output Input Image Key/Value Query MMFuser Output

1

Key/Value

Fig. 5. Feature map visualization of MMFuser. For each image, we provide three types of output feature maps. The term “Key/Value” refers to the averaged
feature maps from four selected shallow and intermediate layers of the ViT—specifically, layers 3, 8, 13, and 18—used as the key and value inputs in
MMFuser. “Query” denotes the feature map from the penultimate layer of the ViT, serving as the query input in MMFuser and as the visual representations
in prior MLLMs. “MMFuser Output” represents the feature map generated after applying the proposed MMFuser. As can be seen, the proposed MMFuser
captures fine-grained details from shallow and intermediate ViT layers, enriching the visual representations for the LLM.

TABLE VI
ABLATION ON LAYER COMBINATION.

Selected Layers VizWiz POPE MME MMB SEED MMVet Avg.
Q K,V

– – 53.6 85.9 1531.3 67.7 61.6 35.4 63.5

23 [1, 3, 5, 7] 54.3 87.3 1582.2 69.5 61.8 35.1 64.5
23 [9, 11, 13, 15] 52.4 87.0 1560.3 69.1 61.7 35.6 64.0
23 [17, 19, 21, 24] 54.7 87.3 1591.2 69.3 62.0 35.8 64.8
23 [5, 8, 11, 20] 54.7 87.2 1584.0 69.3 62.5 36.2 64.9
23 [3, 8, 13, 18] 57.4 87.5 1585.2 69.9 62.0 36.6 65.4

1) Results of Region Captioning: On region captioning
tasks, our model shows significant improvements. As shown
in Table IV, compared to LLaVA-1.5, the 7B model of
MMFuser surpasses LLaVA-1.5 by 2.5 points on average,
while the 13B version improves by 3.9 points. This indicates
that MMFuser captures fine-grained information, enhancing
caption accuracy and richness.

2) Results of Referring Expression Comprehension (REC):
We also employ REC tasks to evaluate the model’s grounding
capabilities. As shown in Table V, our model consistently
outperforms LLaVA-1.5 models across all benchmarks, with
an especially notable average improvement of 5.7 points for
the 7B model compared to LLaVA-1.5-7B. This highlights that
the visual representations generated by MMFuser are more
detailed and comprehensive, enhancing spatial localization and
significantly boosting performance in grounding tasks.

E. Ablation Study

1) Ablation Study on Layer Combination: To evaluate the
contribution of feature maps from different layers of ViT [17]
to model performance, we conduct an ablation study on the
MMFuser-13B model by sampling feature maps from various
depths. As detailed in Table VI, we utilize the feature map
from the 23rd layer of ViT as the query, while the key and
value are formed by concatenating feature maps sampled from
different layers: shallow (row 2), intermediate (row 3), deep
(row 4), non-uniform (row 5), and uniform sampling (row 6).

TABLE VII
ABLATIONS ON ATTENTION MECHANISMS. “CPLX.” INDICATES THE

COMPLEXITY TYPE OF THE ATTENTION MECHANISM, ENCOMPASSING
BOTH QUADRATIC (QUAD.) AND LINEAR VARIANTS.

Attention Type Cplx. VizWiz POPE MME MMB SEED MMVet Avg.

LLaVA-1.5-13B [3] – 53.6 85.9 1531.3 67.7 61.6 35.4 63.5

Global Attn [86] Quad. 52.9 87.6 1566.3 68.6 62.2 35.3 64.2
Linear SRA [87] Linear 54.3 87.0 1581.6 68.9 61.9 34.7 64.3
Deformable Attn [74] Linear 57.4 87.5 1585.2 69.9 62.0 36.6 65.4

TABLE VIII
ABLATIONS ON INTERNAL MODULE DESIGNS.

Module VizWiz POPE MME MMB SEED MMVet Avg.

LLaVA-1.5-13B 53.6 85.9 1531.3 67.7 61.6 35.4 63.5

+ Cross-Attn 54.6 87.2 1557.1 68.2 62.2 36.1 64.4
++ Self-Attn 57.4 87.5 1585.2 69.9 62.0 36.6 65.4

The results demonstrate that incorporating feature maps
from multiple layers significantly improves the model’s visual
representation capabilities. The feature maps from different
layers capture information at varying receptive field sizes,
each offering distinct advantages depending on the task.
Notably, uniform sampling across layers, which aggregates
information from diverse receptive fields, achieves the highest
performance. Therefore, MMFuser employs this strategy to
optimize visual representation for visual-language tasks.

2) Ablation on Attention Mechanisms: The attention mech-
anism in MMFuser is modular and can be replaced with
different variants. We experiment with three types of attention
mechanisms using the 13B model of MMFuser. As shown
in Table VII, our framework consistently enhances the visual
representation capability of the MLLM, regardless of the at-
tention mechanism employed. This confirms the effectiveness
and adaptability of our feature fusion module.

Compared to global attention mechanisms [86], sparse at-
tention mechanisms with linear complexity not only deliver
superior performance in MMFuser but also offer substantial
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LLaVA-1.5: The image features a box of Annie's Organic Chocolate Chip Cookie Bites. The box is purple and 
has a picture of a cookie on it. The cookies are made with organic ingredients and are gluten-free, making 
them a healthier alternative to traditional chocolate chip cookies. The box contains a dozen cookies, each 
with a bite-sized portion, perfect for snacking or sharing with friends and family.

MMFuser (Ours): The image features a box of Annie's Homegrown Organic Chocolate Chip Cookie Bites. 
The box is purple and has a picture of a cookie on it. The cookies are made with organic ingredients and are 
free from synthetic flavors, synthetic colors, and synthetic preservatives. The box contains a total of 12 
cookies, making it a perfect snack option for those who enjoy organic and healthier alternatives. 

User: Please provide a detailed description of the image.

LLaVA-1.5: The image features a pie chart with various data points related to common data science roles. The chart is divided into four 
sections. The first section is titled "53% of companies still rely on their chief executive officer for their data and analytics agenda." The 
second section is titled "57% of companies say they have a system administrator." The third section is titled "59% of companies say 
they have a business intelligence officer." The fourth section is titled "58% of companies say they have a chief data officer."

MMFuser (Ours): The image displays a series of statistics related to common data science roles. The 
first statistic shows that 53% of companies still rely on their chief executive officer (CEO) for their 
data and analytics strategy. The second statistic indicates that 57% of businesses say they have a 
chief data officer (CDO) to lead their data and analytics efforts. The third statistic highlights that 58% 
of companies believe their system administrator should be responsible for their data and analytics 
strategy.

User: Please identify the text in the picture.

(a) Qualitative example of the complex captioning capability.

(b) Qualitative example of the OCR capability.

User: 
Please provide the bounding box 
coordinates of the area described 
in this sentence: Traffic signs.

User: 
Please provide the bounding box 
coordinates of the area described 
in this sentence: Glass water cup.

MMFuser (Ours):                IoU: 0.76
[0.69, 0.40, 0.76, 0.49]

Ground-truth: 
[0.70, 0.41, 0.76, 0.49]

Ground-truth: 
[0.83, 0.89, 0.96, 1.00]

MMFuser (Ours):                IoU: 0.74
[0.83, 0.88, 0.99, 1.00]

LLaVA-1.5:                            IoU: 0.53
[0.69, 0.41, 0.78, 0.51]

LLaVA-1.5:                            IoU: 0.63
[0.81, 0.87, 0.97, 0.99] 

(c) Qualitative example of the visual grounding capability.

Fig. 6. Qualitative comparisons between MMFuser and LLaVA-1.5. For the complex captioning and OCR tasks, the text generated by each model is color-
coded to match the model name, indicating content that accurately reflects the information present in the image. Text in red denotes errors or hallucinations.
For visual grounding examples, the predicted bounding boxes are also color-coded according to the respective model names, while yellow bounding boxes
denote the ground truth. The Intersection over Union (IoU) metric is used to evaluate the overlap between predicted bounding boxes and the ground truth. A
higher IoU value indicates a more accurate prediction, as it reflects a larger intersection area relative to the union area.

improvements in computational efficiency. Among the linear
attention mechanisms, deformable attention [74] provides the
most significant performance gains. Therefore, deformable
attention is adopted as the default mechanism in MMFuser.
It is noteworthy that future research could explore more
advanced attention mechanisms to further enhance the visual
representation capabilities of MLLMs.

3) Ablation on Internal Module Designs: To validate the
key contributions of our MMFuser architecture, we incre-
mentally enhance the LLaVA-1.5-13B baseline [3] with our
proposed designs. As illustrated in Table VIII, integrating

cross-attention mechanisms to extract fine-grained information
from various ViT layers leads to a marked performance
improvement. Specifically, our model outperforms the baseline
by 1.3 points on POPE and 0.7 points on MMVet. Moreover,
the addition of self-attention to these fine-grained features
further enhances the model’s capability to capture relevant
information, resulting in gains of 2.8 points on VizWiz, 28.1
points on MME, and 1.7 points on MMB. These results
collectively demonstrate that our design significantly enhances
the visual representation abilities of MLLMs, highlighting the
critical role of each component in our model.
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4) Visual Representation Visualization: To intuitively vali-
date the impact of MMFuser on visual features, we present the
input and output feature map visualizations for four example
images in Fig. 5. For the input image, the shallow feature maps
convey richer fine-grained information, but this information is
messy and the semantic information is difficult to distinguish.
For instance, the lower-left image contains complex infor-
mation, making it challenging to intuitively discern semantic
content from the shallow features. But after the attention mech-
anism of MMFuser, the foreground characters in the picture
are well highlighted, and the semantic information is aligned
with the last layer feature map of ViT. The aligned detailed
features can effectively enhance the fine-grained perception
capability of MLLMs.

F. Qualitative Comparison

In Fig. 6, we compare MMFuser and LLaVA-1.5 across
three case studies related to fine-grained analysis, including
complex captioning, OCR, and visual grounding. The visual-
ization results show that the rich fine-grained information in
the shallow feature maps significantly enhances the ability of
MLLMs to capture and process image details.

For the complex captioning example, MMFuser shows great
improvement in recognizing small text and small objects.
Compared to LLaVA-1.5, MMFuser even successfully identi-
fies the small and blurred green background text describing the
healthy ingredients of the cookie: “free from synthetic flavors,
synthetic colors, and synthetic preservatives.”

For the OCR task, MMFuser shows enhanced recognition
of small texts, effectively mitigating hallucinations that often
occur in LLaVA-1.5. The latter struggles with misaligned
and hallucinated content due to inadequate text recognition
capabilities, leading it to supplement details from its prior
knowledge rather than the image itself.

In the visual grounding example, demonstrates a more
accurate delineation of object boundaries, especially when
adjacent objects have similar colors. This improvement is more
pronounced with small objects, such as the positioning of the
traffic sign in the left-side example, where MMFuser shows a
23% increase in the IoU metric.

In summary, these results further validate the effectiveness
of MMFuser in addressing the issue of missing fine-grained
image details in MLLMs.

V. CONCLUSION

In this paper, we introduced MMFuser, a novel multimodal
multi-layer feature fuser designed to improve visual represen-
tation in Multimodal Large Language Models (MLLMs). By
integrating both shallow and deep features from the vision
encoder, MMFuser addresses the limitations of relying solely
on deep features from a single vision encoder, which often
results in the loss of fine-grained details. Our experiments
show that MMFuser enhances the performance of the LLaVA-
1.5 model across various benchmarks, enriching visual repre-
sentation without the redundancy and computational overhead
of ensemble models. This approach maximizes the potential of
a single ViT encoder, offering an efficient and flexible solution

for MLLMs. Overall, MMFuser improves fine-grained detail
capture and semantic understanding in MLLMs, and we hope
it will contribute to the community’s efforts in developing
more robust and efficient multimodal models.
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